Rotation Intensity and Soil Management

Chad Godsey

2009 Winter Crop School

Stillwater, OK

Fallow: The period in a rotational system when no crop is grown in a given area.

- Fallow periods accumulate water and allow soil nutrients to be released through mineralization.
- Precipitation storage during fallow is relatively low.
- Fallow periods reduce soil carbon levels because microbial activity continues (use carbon as energy source) while now carbon is being added to the system.
- A fallow period does not need to be any longer than necessary to achieve 80 to 100% of stored water capacity.

 Water-holding capacity is controlled primarily by soil texture and organic matter.

Soils with smaller particles (silt and clay) have a larger surface area than those with larger sand particles, and a large surface area allows a soil to hold more water.

Organic matter percentage also influences water-holding capacity. As the percentage increases, the water-holding capacity increases because of the affinity organic matter has for water.

Ava	ilal	ble	Water	Capacity	by Soil	Texture

	Available Water Capacity			
Textural Class	(Inches/Foot of Depth)			
Coarse sand	0.25-0.75			
Fine sand	0.75-1.00			
Loamy sand	1.10-1.20			
Sandy loam	1.25-1.40			
Fine sandy loam	1.50-2.00			
Silt loam	2.00-2.50			
Silty clay loam	1.80-2.00			
Silty clay	1.50–1.70			
Clay	1.20-1.50			

Institute of Agriculture and Natural Resources at the University of Nebraska - Lincoln.

Institute of Agriculture and Natural Resources at the University of Nebraska - Lincoln.

What's the difference between success and failure of summer crops?

Planting Date

Precipitation timing

Analyzing Precipitation Trends

Major County

Oklahoma 10-year (1998-2007) average yields, water use efficiencies, and annual transpiration estimates for crops representing more than 1% of total cropland area

	yield	Average yield	WUE ¹	Transpiration	
		lbs acre ⁻¹	bu acre ⁻¹ inch ⁻¹	inches	
Winter wheat	33 bu	1980	5.3	6.2	
Corn	90 bu	5040	10.4	8.7	
Sorghum	45 bu	2520	7.8	5.8	
Soybean	23 bu	1380	4.0	5.8	
Cotton	0.75 bale	360	100 (lb)	3.6	
Rye	20 bu	1120	5.2	3.6	

ntensity

Number of crops in a given year
3 crops in 2 years

4 crops in 3 years

LCB Rotation

Average Grain Yield - LCB Rotation

			Grain Yield					
				2007				
TRT			2006-2007	Grain	2007-2008	3	2008-2009	Ð
Number	Tillage	Rotation	Wheat	Sorghum	Wheat	2008 Corn	Wheat	2009 Corn
bu/acre								
1	СТ	Wheat	32		30		22	
2	СТ	W-DC-C	30	42		87	19	
3	СТ	W-W-DC-C	33		32	winter pea		64
4	NT	Wheat	32		31		23	
5	NT	W-DC-C	31	45		108	20	
6	NT	W-W-DC-C	32		29	winter pea		66

Crops planted

Double crop

Soybean – June 25

Sunflower – July 1

Grain sorghum – June 24

□ Timing of maturity affected water use

- Soybean and sorghum plots driest because trying to set seed.
- Sunflower was at R5.1 stage at DOY 233, just after last major rain.

□ 3 crops in 2 years

- Wheat dc sorghum soybean
- Wheat dc sunflower grain sorghum
- Wheat canola dc grain sorghum
- Wheat dc sesame soybean
- Canola dc grain sorghum wheat

5-30 in Precipitation N

- □ 4 crops in 3 years
 - Canola Wheat DC sesame Grain sorghum
 - Canola Wheat DC sesame Cotton
 - Wheat Wheat DC Sunflower Grain sorghum
 - Other possibilities:
 - □ Safflower
 - Hay grazer
 - Cowpea

Alternative Crops

- □ Now Crops
 - Sesame
 - Sunflower
- Possibilities
 - Safflower

Sunflower Facts

- Two types produced
- Oilseed type
 - Linoleic
 - Mid-oleic (NuSun) at least 55% oleic acid
 - High Oleic
- Confection type

- Advantages
 - Fits well in rotation, especially as a double crop, wide planting window
- Disadvantages
 - Potentially uses water from deep in profile, broadleaf weed control
- Prowl H₂O and Spartan
- Planting Considerations Seed to soil contact critical
 - Thicker hull requires more moisture to absorb through for germination
- Population ~ 20,000

Planting

Oil content

38- 50%

□ Premium > 40%

- Herbicide tolerance
- Semi-dwarf vs. normal height
 - Yield potential

Safflower

Carthamus tinctorius L.

- Origin: Middle East
- □ <u>Oil Content:</u> 20-45%
- Premium Oil: Linoleic and Oleic Acid
- Disadvantages: Foliar and Head Rot diseases.
- Advantages: Very drought tolerant due to extensive root system (3 to 10 feet).

Safflower Carthamus tinctorius L.

Planting experience so far suggests that safflower establishes relatively easily

Spring Safflower

- Best time to plant?
- Seed germination can handle cold temps down to 40 F
- Initial High Plains seeding is best probably in March, maybe even late Feb.
- Later plantings may suffer from heat and/or Botrytis head rot
- Most current commercial varieties are spring

Rotations evolve – not revolve

Think long-term

□ Maintain flexibility

Summary

