Managing Invasive Range Plants in Beef-Cattle Grazing Systems: The Tale of Sericea Lespedeza in Native Tallgrass Prairie

KC Olson Department of Animal Sciences & Industry Kansas State University

- Covered 165 million acres prior to European settlement
 - 6.2 million acres (4%) remains
- The remnant is home to more than:
 - 500 plant species
 - 700 insect species
 - 185 bird species

- 40 mammal species
- More ecologically diverse than rain forest ecosystems
- Provides an array of ecosystem services including carbon sequestration and water recycling
- Fire return intervals of 2 to 4 years

- Covered 165 million acres prior to European settlement
 - 6.2 million acres (4%) remains
- The remnant is home to more than:
 - 500 plant species
 - 700 insect species
 - 185 bird species

- 40 mammal species
- More ecologically diverse than rain forest ecosystems
- Provides an array of ecosystem services including carbon sequestration and water recycling
- Fire return intervals of 2 to 4 years

- Covered 165 million acres prior to European settlement
 - 6.2 million acres (4%) remains
- The remnant is home to more than:
 - 500 plant species
 - 700 insect species
 - 185 bird species

- 40 mammal species
- More ecologically diverse than rain forest ecosystems
- Provides an array of ecosystem services including carbon sequestration and water recycling
- Fire return intervals of 2 to 4 years

- Covered 165 million acres prior to European settlement
 - 6.2 million acres (4%) remains
- The remnant is home to more than:
 - 500 plant species
 - 700 insect species
 - 185 bird species

- 40 mammal species
- More ecologically diverse than rain forest ecosystems
- Provides an array of ecosystem services including carbon sequestration and water recycling
- Fire return intervals of 2 to 4 years

Dominated by C4 native grasses

- Leguminous native forbs fix N
- Capable of producing ~ 4,000 kg DM per ha without agronomic inputs
- Supports yearling cattle gains that exceed 1 kg per day during summer

Annually home to:

ANSAS STATE

Ξ

- ~ 1.3 million transient stocker cattle
- ~ 500,000 beef cows
- Provides sustainable income for many families and rural communities
- Susceptible to invasion by exotic plants

Blasi et al., 2008 NASS, 2019

- "About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed *transformers*."
 - Richardson et al. (2001) Diversity & Distributions 6:93-107

- "About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed *transformers*."
 - Richardson et al. (2001) Diversity & Distributions 6:93-107

"(Wild-type) sericea (lespedeza) is the plutonium of the plant community" – Anonymous

- "About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed *transformers*."
 - Richardson et al. (2001) Diversity & Distributions 6:93-107
- "(Wild-type) sericea (lespedeza) is the plutonium of the plant community" – Anonymous

Wild-type sericea lespedeza is better likened to a feral hog

- "About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed *transformers*."
 - Richardson et al. (2001) Diversity & Distributions 6:93-107
- "(Wild-type) sericea (lespedeza) is the plutonium of the plant community" – Anonymous

Wild-type sericea lespedeza is better likened to a feral hog

- Tolerant of poor soils
- Deeply-rooted perennial
- Robust canopy
- Resistant to grazing
- High in condensed tannins
- Prolific seed production
- Extended seed dormancy
- Treatment with specialty herbicides is common
 - Herbicide treatment results in collateral damage to non-target native plants, insects, and wildlife

KANSAS STATE

Eddy et al., 2003 KDA, 2016

Where to begin? Start with basic questions.

How does [CT] fluctuate over time?

Effect of harvest date on concentration and protein-binding capacity* of CT in sericea lespedeza (DM basis)

Sampling date	Growth stage	[CT], g/kg	Protein-binding [CT], g/kg
June 1	Single-stem	103.9 ^a	48.0 ^a
July 1	Multiple-stem	151.1 ^b	68.6 ^b
August 1	Budding	191.1 ^d	94.0 ^c
September 1	Flowering	169.4 ^c	88.6 ^a
October 1	Mature	145.4 ^b	69.6 ^b
SEM	-	5.02	1.05

* Total phenolic compounds which precipitated proteins.

^{a, b, c, d} Within a column, means without a common superscript differ (P < 0.01).

How much will experienced cattle eat?

Relative abundance of sericea lespedeza in diets of beef cows grazing native range in the Kansas Flint Hills

ANSAS STATE

Ξ

Preedy et al., 2013

^{a, b, c, d} Means without a common superscript differ (P < 0.01).

How much will naive cattle eat?

Relative abundance of sericea lespedeza in diets of yearling beef steers grazing native range in the Kansas Flint Hills

ANSAS STATE

Ξ

Sowers et al., 2019

Can ruminal microbes adapt to a high CT diet?

Effects of Culture Substrate and Prior Tannin Exposure on Total VFA Concentration

Hoehn et al., 2018

- ^{a, b, c, d} Means with unlike superscripts differ (P < 0.001).
 - e., f High CT or tannin-free substrate.
 - ^{g, h} Adapted to high CT or tannin-free substrate for 21 d.

Can we study intake in confinement?

Effects of sericea lespedeza contamination* on intake of tallgrass prairie hay by beef cows

Kansas State

UNIVERSIT

Eckerle et al., 2011a * Contaminated prairie hay = 5.5% CP, 41% ADF * Uncontaminated hay = 5.4% CP, 40% ADF

Can the effects of CT on ruminal N availability be managed?

Binding affinity of condensed tannins for bovine serum albumin (BSA) in the presence of polyethylene glycol (PEG) or corn steep liquor (CSL)*

		Mitigator	True Protein	CT-Bound
Sample	Mitigator	Dose ^a	Availability ^b (%)	Protein ^c (%)
Tannin + BSA	None	0	42.7	57.3
Tannin + BSA	PEG	16	59.0	41.0
Tannin + BSA	CSL	16	155.7	-

^a Mitigator dose is expressed as mg/mg BSA in the original sample.

^b True protein availability was expressed as % BSA protein in the original sample.

^c CT-bound protein was expressed as the inverse of true protein availability.

*CSL = 45.1% DM, 34.4% CP (DM basis).

Eckerle et al., 2011b

Can the effects of CT on ruminal N availability be managed?

Effects of increasing dose of corn steep liquor (CSL) on intake and digestion of tallgrass prairie hay contaminated by sericea lespedeza

Corn steep liquor intake, (kg DM /d)							
Item 0 0.6 1.2 1.8							
Forage DMI, g/kg BW ^{0.75}	69.9 ^a	80.7 ^b	80.9 ^b	84.6 ^b	3.09		
Total-tract DM Digestibility, %	52.6 ^a	55.6 ^a	65.6 ^b	66.3 ^b	2.02		
Total-tract N digestibility, %	-1.5 ^a	18.6 ^b	51.7°	52.3 ^c	1.94		
Total digestible DMI, g/kg BW ^{0.75}	40.9 ^a	55.0 ^{ab}	75.2 ^{bc}	87.6 ^c	2.14		

Eckerle et al., 2011b ^{a, b, c} Means within a row lacking common superscripts differ (P > 0.05).

Can CT mitigation influence diet selection?

Effects of low-level CSL supplementation on forage intake and total tract digestion

CSL intake, (kg DM /d)						
Item00.6P -Value						
Uncontaminated forage DMI, g/kg BW ^{0.75}	43.6	41.6	3.10	0.65		
Contaminated forage DMI, g/kg BW ^{0.75}	50.3	63.0	2.48	< 0.01		
Total forage DMI, g/kg BW ^{0.75}	93.9	104.7	3.90	0.05		
Total-tract DM digestibility, %	50.5	53.9	1.66	0.17		
Total digestible DMI, g/kg BW ^{0.75}	48.7	63.7	3.49	< 0.01		

Eckerle et al., 2011c

Can CT mitigation work under field conditions?

Effects of corn steep liquor supplementation on the abundance of sericea lespedeza in diets of grazing beef cows

ANSAS STATE

Ξ

Preedy et al., 2013 ** Treatments differ within month (*P* < 0.01)

Can targeted grazing by small ruminants be used to control sericea lespedeza?

Effect of late-season grazing by sheep on weekly herbivory of sericea lespedeza

KANSAS STATE

ERS

Lemmon et al., 2017 * Treatments differ within week (*P* < 0.01) Can targeted grazing by small ruminants be used to control sericea lespedeza?

Effect of late-season grazing by sheep on seed production by sericea lespedeza

UNIVERSITY

^{a, b} Means with unlike superscripts differ (P < 0.01)

Can targeted grazing by small ruminants be used to control sericea lespedeza?

2013 Pasture 8 Steers + Sheep

KANSAS STATE

UNIVERSITY

2014 Pasture 8 Steers + Sheep

2015 Pasture 8 Steers + Sheep

Lemmon et al., 2017

April 11, 2016

August 2, 2016

Fire timing and sericea lespedeza basal cover

UNIVERSITY

^{a, b} Means w/ unlike superscripts differ ($P \leq 0.01$)

Fire timing and sericea lespedeza whole-plant mass

ERS

^{a, b} Means w/ unlike superscripts differ ($P \le 0.01$)

Fire timing and sericea lespedeza seed production

Ξ

RSI

^{a, b} Means w/ unlike superscripts differ ($P \le 0.01$)

Pasture 9 30355.0 mg

Pasture 7 225.0 mg

Pasture 8 8.10 mg

So... what happened to everything else?

Fire timing and peak forage biomass

Mid-July

Pasture # 8 Burned 08.01.14 Pictured on 09.26.14

Fire timing and graminoid cover, % of total basal cover

Item	Early spring	Mid-summer	Late summer	SEM*	P-value [†]
Total grass cover, %	82.8	85.9	86.5	2.17	0.20
C4 grasses, %	67.7	65.9	64.8	3.40	0.70
C3 grasses and sedges, %	15.1	19.7	21.7	3.11	0.11
Annual grasses, %	0.07	0.33	0	0.227	0.31

* Mixed-model SEM associated with comparison of treatment main effect means.

[†]Treatment main effect.

Fire timing and forb cover, % of total basal cover

Item	Early spring	Mid-summer	Late summer	SEM*	P-value [†]
Total forb cover, %	15.4	12.1	11.2	2.28	0.16
Perennial forbs, %	15.3 ^a	10.9 ^b	9.7 ^b	2.05	0.02
Sericea lespedeza, %	7.3 ª	3.4 ^b	1.7 ^b	1.56	< 0.01
Baldwin's ironweed, %	0.7 ª	0.2 ^b	0.4 ^b	0.16	0.01
Western ragweed, %	3.3 ^a	0.9 ^b	0.7 ^b	0.53	< 0.01
Major wildflowers, %	0.6 ^a	0.9 ^{ab}	1.4 ^b	0.28	0.03
Annual forbs, %	0.1 ^a	1.2 ^b	1.5 ^b	0.52	0.02

* Mixed-model SEM associated with comparison of treatment main effect means.

[†]Treatment main effect.

^{a, b} Within row, means with unlike superscripts differ ($P \le 0.05$).

Fire timing and forb cover, % of total basal cover

Item	Early spring	Mid-summer	Late summer	SEM*	P-value [†]
Total forb cover, %	15.4	12.1	11.2	2.28	0.16
Perennial forbs, %	15.3ª	10.9 ^b	9.7 ^b	2.05	0.02
Sericea lespedeza, %	7.3 ^a	3.4 ^b	1.7 ^b	1.56	< 0.01
Baldwin's ironweed, %	0.7 ^a	0.2 ^b	0.4 ^b	0.16	0.01
Western ragweed, %	3.3 ^a	0.9 ^b	0.7 ^b	0.53	< 0.01
Major wildflowers [‡] , %	0.6 ^a	0.9 ^{ab}	1.4 ^b	0.28	0.03
Annual forbs, %	0.1 ª	1.2 ^b	1.5 ^b	0.52	0.02

* Mixed-model SEM associated with comparison of treatment main effect means.

⁺Treatment main effect.

[‡] Combined basal cover of catclaw sensitive briar, dotted gayfeather, heath aster, prairie coneflower, purple poppy-mallow, purple prairie-clover, round-headed prairie clover, and white prairie-clover.

^{a, b} Within row, means with unlike superscripts differ ($P \le 0.05$).

Fire timing and plant-species diversity

Item	Early spring	Mid-summer	Late summer	SEM*	P-value [†]
Overall species richness	22 ^a	27 ^b	27 ^b	1.6	< 0.01
Native species richness	21 ª	25 ^b	26 ^b	1.6	< 0.01
Graminoid richness	10	11	11	0.6	0.46
Forb richness	10 ^a	15 ^b	15 ^b	1.2	< 0.01
Forb evenness	0.70 ^a	0.76 ^b	0.81 ^b	0.039	0.02
Forb diversity	0.57 ^a	0.73 ^b	0.83 ^b	0.066	< 0.01

^{a, b} Within row, means with unlike superscripts differ ($P \le 0.05$).

Lessons Learned

- Most of the value of rangeland to society can't be quantified by animal production or animal-based revenue
- Understanding the basic biology of invasive organisms is essential to find their Achilles' Heel(s)
- For most invasive organisms, multi-faceted control mechanisms will likely be necessary to cover an inclusive range of land managers
- You won't know all you need to know to find answers learn it from colleagues and students
- Every location has enigmatic agricultural problems, related to invasive species or otherwise.
 - Some are shared with other regions. You own the rest. Don't expect enthusiastic buy-in from "outside" funding sources.
 - Find ways to engage the stakeholder base.

KANSAS STATE

UNIVERSI

• Keep knocking on doors; eventually, somebody with a checkbook will respond.